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Outline

= Why develop lactation PBPK models?
= Workflow for developing lactation (and pediatrics) PBPK models

= PBPK-based simulations of concentrations in human milk for 10 model
medicines

= |n vitro permeability model across blood milk barrier
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Risk related to medication and breastfeeding

= WHO recommends exclusive breastfeeding during first 6 months of life

» 83% of medicine labels contain no information about use during lactation
(EMA, 2011)

Human milk
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Pediatric
safety ?
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= “No woman should have to make an uninformed decision about
breastfeeding her baby” — IMI ConcePTION

References EMA, (2011); WHO, (2024).

Abbreviations: World Health Organization (WHO); European Medicines Agency (EMA); Innovative Medicines Initiative (IMI)
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Non-clinical platform for predicting milk and infant exposure
to maternal medication

In vitro cell Physiologically-based Human milk and pediatric
culture models pharmacokinetic (PBPK) models systemic exposure
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The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the
human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in KU LEUVEN

human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform



https://doi.org/10.1016/j.biopha.2020.111038

Non-clinical platform for predicting milk and infant exposure

to maternal medication

Physiologically-based
pharmacokinetic (PBPK) models
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(Development of a framework for physiologically-based\
pharmacokinetic (PBPK) predictions of transfer of medicines into
human milk, and subsequent infant exposure to maternal
\Jnedicines via breastfeeding. y

The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the

human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in KU LEUVEN
human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform
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Selected model compounds
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Performance of the non-lactating adult PBPK models
in PK-SIM
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References: Nauwelaerts et al. (2023)
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Workflow for lactation PBPK model development
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References: Nauwelaerts et al. (2023)
Abbreviations: Physiologically-based pharmacokinetic modelling (PBPK modelling); Milk-to-plasma ratio (M/P ratio); area-under-the-curve (AUC); plasma concentration (C.sma); fraction unbound in

plasma (fuyasma); Secretion clearance (Clg.); human milk concentration (Cy,); total unbound fraction in milk (fupy «); reuptake clearance (Cl,); polar surface area (PSA); molecular weight (MW); KU LEUVEN
octanol water partition coefficient (LogP); octanol:buffer (pH 7.4) distribution coefficient (LogD7.4); hydrogen bound donors (HBD)




Lactation PBPK model predictions were comparable with literature for

80% of the selected (model) compounds
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References: Nauwelaerts et al. (2023)
For amoxicillin, the M/P ratio was calculated using the peak concentration in plasma and the highest measured concentration in human milk. Alternatively, non-compartmental analysis was applied to

.

Predicted M/P Ratio
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estimate the area-under-the-curve (AUC) based M/P ratio, assuming that the elimination slope in human milk is identical to plasma. For cetirizine, the M/P ratio was calculated using the observed
steady-state AUC in human milk (0.50 mg*h/L), and the observed plasma AUC in non-lactating adults receiving the same dosing regimen (2.50 mg*h/L). Some studies report human milk

KU LEUVEN

concentrations below the limit of quantitation for sertraline and valproic acid.



Infant exposure
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References: Nauwelaerts et al. (2023)

Lactation PBPK model

Concentration

Time

Daily infant dosage (DID, mg/kg/day)
= Concentration human milk(mg/ml‘) * VOlumehuman milk (mL/kg/day)

o Daily infant dosage
Relative infant dose (RID, %) = - * 100 %
Daily maternal dosage

. . Daily infant dosage
Relative therapeutic infant dose (RIDtherapeutic, %) = Dai ly therapeutic infant dosage * 100 %

UCplasma,infant

Relative infant exposure (RIE, %) = * 100 %

A UCplasma,mother

Abbreviations: Physiologically-based pharmacokinetic modelling (PBPK modelling); Daily infant dosage (DID); relative infant dose (RID); relative infant exposure (RIE), relative therapeutic infant dose

(R [ Dtherapeutic)
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Infant Risk Assessment
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The RID, % was low (< 10%) for 8 medicines;

The RID,therapeutic for all medicines was well below (<25%) the common dosing regimens
given to infants for therapeutic reasons.

References: Nauwelaerts et al. (2023)
Infant exposure of nevirapine and tenofovir should be interpreted with caution as human milk concentration-time profiles were overpredicted.

10 Caffeine is administered only to preterm infants. KU LEUVEN




Non-clinical platform for predicting milk and infant exposure
to maternal medication
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The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the
human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in KU LEUVEN

human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform



https://doi.org/10.1016/j.biopha.2020.111038

Epithelial cells form a tight barrier between blood and
human milk

Luminal epithelial cells

Tight junctions Myoepithelial cells

Gap junctions
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Bidirectional permeability coefficients were obtained in human
mammary epithelial cells (hMECSs)

Donor solution
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apparent permeability (i.e. representing secretion towards
human milk) in hMECs and the in vivo M/P ratio.

Independent experiments are shown in red (n=6), green (n=6) and blue (n=3).

Reference: https://doi.org/10.3390/ijms252111454

Abbreviations. Permeability coefficient (Papp, cm/s); steady-state flux (dQ/dt); Surface area of the filter (A); Initial donor concentration (C,) KU LEUVEN
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In vitro permeabillity coefficients can inform lactation
PBPK models
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Integration of in vitro permeabillity coefficients
iImproved human milk predictions of nevirapine

Nevirapine
Oral administration of 200 mg bidaily

Nevirapine
Oral administration of 200 mg bidaily
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Source: Giuliono et al. (2007); Mirochnick et al. (2007); Sou iuliono et al. (2007); Mirochnick et al. (2007);
Olangunju et al. (2015); Olangu , t al. (2018); Palombi et al. (2012); Olangunju et a |(2o15) ou ngu 1 t al. (2016); P lombi et al. (2012);
Shapiro et al. (2005); Shapiro et al. (2013) Shapiro et al. (2005); Shapiro et al. (2013)

Figure on the right panel shown the data with the y-axis on a log scale.

Confidential data | ¥YtEUVEN



Conclusions and future perspectives

= | actation PBPK models carry the promise for “early” in silico prediction of

medicine milk concentration time profiles

» Ongoing efforts will implement in vitro permeability coefficients across the blood
— milk barrier

» PBPK-based simulations are expected to support decisions about medication
use during lactation
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